Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

新闻报道新闻报道
0

人工智能的物理学基石:2024 诺贝尔物理学奖揭示机器学习的奥秘

引言

2024年诺贝尔物理学奖授予 Geoffrey Hinton 和 John Hopfield,表彰他们在利用人工神经网络实现机器学习方面的开创性发现和发明。这一奖项不仅是对两位科学家杰出贡献的认可,更标志着人工智能领域与物理学深度融合的新纪元。

深入研究

1. 从物理学到人工智能:神经网络的起源

John Hopfield 是一位物理学家,他在 1982 年提出了 Hopfield 网络模型,该模型模拟了神经元之间的相互作用,并能够存储和检索信息。Hopfield 网络的提出为人工智能领域开辟了新的道路,它证明了物理学原理可以应用于构建具有学习能力的计算系统。

2. 深度学习的先驱:Geoffrey Hinton的贡献

Geoffrey Hinton 是一位计算机科学家,他被誉为“深度学习之父”。他于 1986 年与 David Rumelhart 和 Ronald J. Williams 共同提出了反向传播算法,该算法是训练多层神经网络的关键技术。Hinton 在深度学习领域的贡献还包括玻尔兹曼机器、分布式表示、时滞神经网络、专家混合、变分学习等。

3. 深度学习的突破:ImageNet 挑战赛的里程碑

2012 年,Hinton 领导的研究小组在 ImageNet 挑战赛中取得了重大突破,他们设计的卷积神经网络“AlexNet”以远超第二名的成绩夺冠,将 ImageNet 数据集上的视觉识别错误率降到了 15.3%。这一事件标志着深度学习技术的成熟,并迅速应用于图像识别、语音识别、自然语言处理等领域。

4. 人工智能的未来:胶囊网络的探索

Hinton 始终在探索更先进的深度学习模型,他于 2017 年提出了胶囊网络 (CapsNet),旨在克服传统卷积神经网络的局限性。胶囊网络能够更好地处理图像中的空间关系,并对对抗干扰数据具有更强的鲁棒性。

结论

2024 年诺贝尔物理学奖的颁发,彰显了人工智能与物理学之间的紧密联系。Hinton 和 Hopfield 的研究成果为机器学习奠定了坚实的物理学基础,并推动了人工智能技术的快速发展。未来,人工智能将继续与物理学深度融合,为人类社会带来更多福祉。

参考文献

  • Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning inBoltzmann machines. In Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 1, pp. 282-317). MIT press.
  • Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the NationalAcademy of Sciences, 79(8), 2554-2558.
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).
  • Hinton, G., LeCun, Y., & Bengio, Y. (2015). Deep learning. Nature, 521(7553), 436-444.
  • Hinton, G., Sabour, S., & Frosst, N. (2017). Matrix capsules with EM routing. In International Conference on Learning Representations.

致谢

本文参考了机器之心、Science AI 等媒体的报道,并结合相关学术论文进行整理。


>>> Read more <<<

Views: 0

0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注