Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

0

摘要:
中国科学院赣江创新研究院、长春应用化学研究所的研究团队,近日通过电流辅助催化策略,成功在超低温条件下实现了低钒含量钒基催化剂对氮氧化物(NOx)的完全转化。该研究揭示了电流辅助催化的核心机制,为解决全球环境污染和能源短缺问题提供了新的思路。

一、研究背景
目前,全球面临着严重的环境污染和能源短缺问题。氨选择性催化还原(NH3-SCR)技术是减少NOx排放的重要手段。然而,在超低温下实现高活性NH3-SCR催化剂的研究一直面临挑战。

二、研究方法
研究团队采用电流辅助催化策略,制备了1.36%含量的单原子态钒基催化剂。通过HAADF-STEM、XAFS等表征手段,揭示了V原子以嵌入式单原子态存在于催化剂晶格表面。

三、研究内容
1. 电流辅助下的单原子V基催化剂表现出优异的转换频率、长期持续稳定性和抗硫/水干扰能力。
2. 该策略能显著降低催化体系的能源消耗,实现催化过程节能和减排。
3. 研究揭示了电流辅助催化过程中电子迁移对结合能和化学键的影响机制。

四、研究意义
1. 该研究为解决超低温下NH3-SCR催化剂活性低的问题提供了新的思路。
2. 电流辅助催化策略可广泛应用于环境和能源领域,对大气污染防治具有重要意义。
3. 该策略具有绿色、高效、就地取能、低电势差等特点,有利于大规模推广。

五、总结
本研究揭示了电流辅助催化新机制,为解决环境污染和能源短缺问题提供了新的思路。该研究有望推动低温催化体系的工业化应用,促进催化剂绿色化、电气化、智能化的发展,为全球碳中和的实现做出积极贡献。

文章链接:https://doi.org/10.1038/s41467-024-51034-0

作者:Daying Zheng, Kaijie Liu, Zeshu Zhang, Qi Fu, Mengyao Bian, Xinyu Han, Xin Shen, Xiaohui Chen, Haijiao Xie, Xiao Wang, Xiangguang Yang, Yibo Zhang


>>> Read more <<<

Views: 0

0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注