Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

shanghaishanghai
0

导语:本文将深入解析Fast Reed-Solomon IOP (FRI)邻近性测试,一种创新的密码学工具,它能够显著降低zkSNARK(零知识证明简化可验证证明)的通信复杂度,为构建无需可信设置的zkSNARK提供了新的可能性。

正文:

FRI邻近性测试,由Mathias Hall-Andersen提出,是一种基于Reed-Solomon码的邻近性测试。它的核心在于,通过一种称为“折叠过程”的方法,使验证者能够确定一个承诺的向量是否接近于一个Reed-Solomon码字,而通信量仅为编码维度的多项式对数。

FRI的构造基于有限域和群同态的概念。它通过不断归约来区分接近Reed-Solomon码字的向量与远离码字的向量,从而实现高效的知识抽取。

以下是FRI构造的关键步骤:

  1. 选择有限域和子群:首先,选择一个有限域和一个生成该域子群的元素。

  2. 定义群同态:接着,定义一个从有限域到另一个有限域的群同态,其核为所选子群。

  3. 计算同态多项式:通过插值方法计算同态多项式,该多项式的次数与同态的核的大小成正比。

  4. 折叠过程:通过重复应用同态多项式,将输入向量折叠到更小的维度,从而不断缩小与Reed-Solomon码字的距离。

  5. 验证:最终,只需发送折叠后的向量给验证者,验证者即可检查其是否接近Reed-Solomon码字。

FRI的关键优势在于,它能够将 zkSNARK 的通信复杂度降低到编码维度的多项式对数,从而使得构建实际高效的 zkSNARK 成为可能。此外,FRI 无需可信设置,因此具有更高的安全性。

总结:

FRI邻近性测试是密码学领域的一项重要进展,为构建高效、安全的zkSNARK提供了新的可能性。通过深入了解其构造原理和优势,我们可以期待它在区块链、加密货币和隐私计算等领域发挥重要作用。


>>> Read more <<<

Views: 1

0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注